Implementing PILARS

Ensuring Digital Language and Cultural-Heritage Materials Remain Accessible, Usable, and Sustainably Managed Over Time

- Preserving digital language and cultural collections
- By adopting open standards and clear governance
- Sustainable stewardship protects past investments in research and infrastructure
- Addressing this problem isn't just about technology

LDaCA Architecture

The LDaCA architecture is implemented using the Protocols for Implementing Long Term Archival-Repository Services (PILARS)

- •Data can be stored and **described** in systems based on Open Specifications.
- •Services such as authorised access interfaces, catalogues and search engines can be **built and rebuilt** from these data in a storage system using Open Source Software solutions, services and tools.

PILARS

A framework of protocols to design sustainable archival systems.

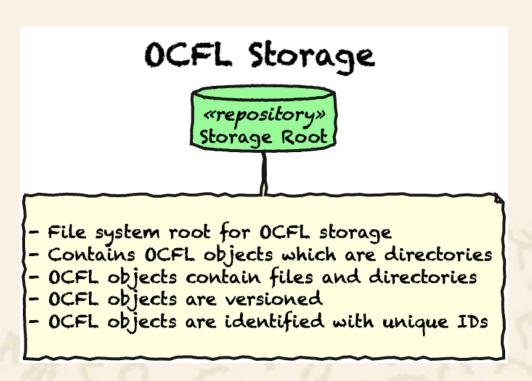
Supports **FAIR** (Findable, Accessible, Interoperable, Reusable) and **CARE** (Collective Benefit, Authority to Control, Responsibility, Ethics) principles.

PILARS Goals

- Autonomy
- Sustainability
- Value

1. Data Portability

- 1. Commodity Storage
- 2. Storage Objects
- Store documentation within storage root


2. Metadata & Annotation

- Each object has descriptive metadata (usage rights, provenance)
- Use Linked Data, Represent high level structures

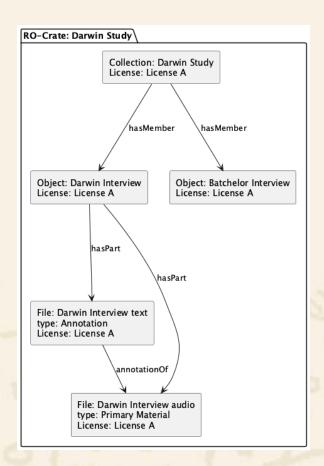
3. Governance

1 - Data is Portable

The **Oxford Common File Layout**


```
arcp name doi10.26180%2F23961609
       - 0=ocfl object 1.1
        inventory, ison
         nventory.json.sha512

    1-001-plain.txt

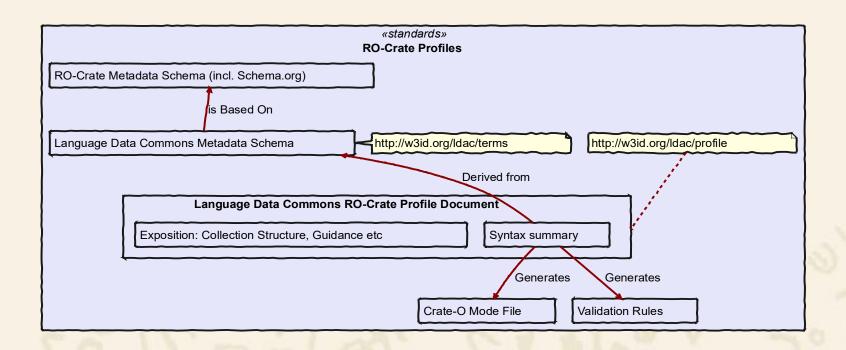

                    1-001.txt
                    1-002-plain.txt
                     1-004-plain.txt
                   - 1-007-plain.txt
                    4-424-plain.txt
                    4-425-plain.txt
                    crate-metadata.json
            inventory.json.sha512
└─ 000N-path-direct-storage-layout
    └─ config.json
ocfl layout.ison
```

Storage

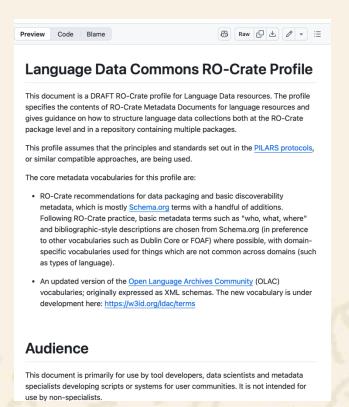
Storage Objects are deposited in a repository. In LDaCA each storage object is an RO-Crate.

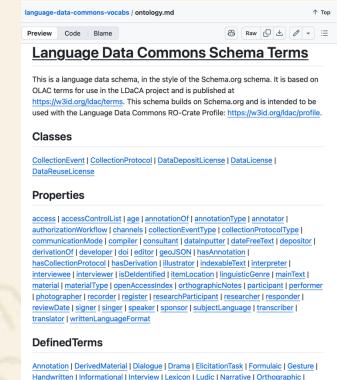
An RO-Crate is a <u>Research Object</u> (or RO) formed of a collection of data (a crate), a special **ro-crate- metadata.json** file which describes the collection and its license information.

The **ro-crate-metadata.json** file is a JSON-LD metadata file at the root of an RO-Crate that describes the crate, its contents, and their relationships in a machine-readable way.

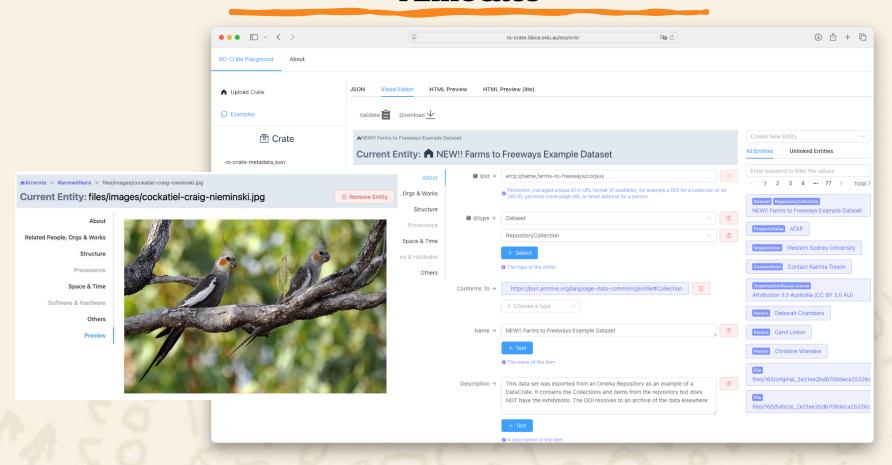


Persistant IDs

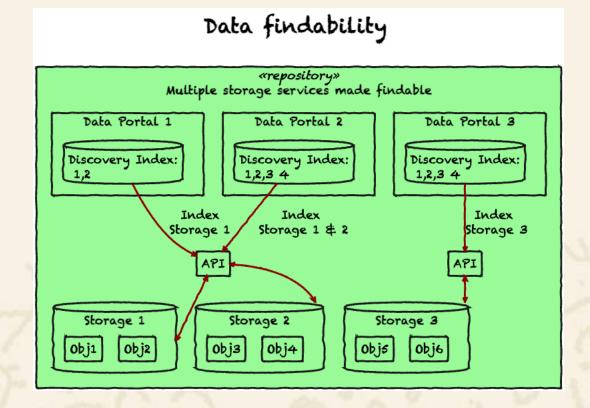

OCFL is laid out as URI IDs and mapped to directory hierarchies.



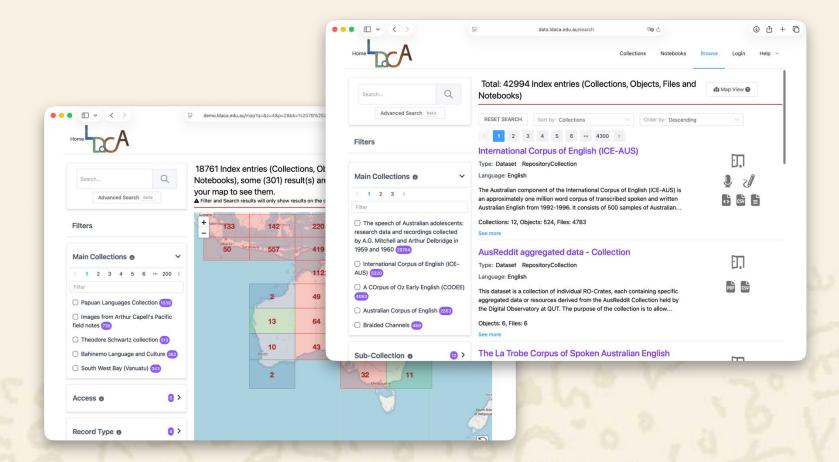
2 Data is annotated



Metadata Schemas



Annotaate



Index

Portals can be then indexed from the storage to make them findable

Portal(s)

Access Control

A distributed access control system that leverages federated authenication (AAF) independently of authorization services.

Key features:

- License-based access control
- Enforcement points
- Interoperable protocols

Motivation

FAIR data principles require not just openness but **controlled access** in many contexts.

Traditional centralized access control solutions struggle with scalability, sustainability, cross-institutional trust, privacy, and fine-grained permissions.

Architecture & Workflow

- 1. User requests access
- 2. Enforcement point at repository
- 3. Repository polls authorization server if necessary
- 4. Decision point at authorization server
- 5. Audit & logging

Benefits	Challenges & Considerations
Scalability across organizations	Ensuring trust among domains
Fine-grained, dynamic access control	Performance overhead of distributed checks
Compliance with FAIR's "Accessible" principle	Handling license revocation, privacy, and interoperability

Access Control

REMS

 $\frac{1}{2}$

Authentication: Who am I?

Authorisation: What am I allowed to see?

ORTALS

Key Learnings and Future Plans

Beyond project websites; sustainable dashboards

The focus is on **delivery**

- Decisions are made for speed and appearance,
- Code, data, and dependencies often become conflated.
- When the developer moves on, knowledge and maintenance capacity disappear.
- What began as a useful tool can become a fragile, unmaintained system

The focus shifts from quick delivery to **long-term value and maintainability**.

- Systems are built with open standards.
- Data and code are portable and separate
- Maintenance is part of the design
- The result is a system that endures beyond individual projects and people

TODO

Fix bugs maintain our tools UX improvements

Design and implement complete Workflow for Interactive Deposits

Add more language data collections

Add more analytical notebooks and tools

https://ocfl.io/1.1.0/spec/

Implementing PILARS

Moises Sacal Bonequi

